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Abstract. The spectra of generalized dimensionsDq and of local exponentsf (α) for fractal
measures are evaluated by using the uniform partitions to compute the free energy. The numerical
results obtained from optimal algorithms are compared with the analytical results obtained from
the free energy evaluated with dynamical partitions, in the case of IFS measures. It is proved
that the spectraDq obtained from correlation integrals and dynamical partitions are the same even
for q < 1. The spectra obtained from the uniform partitions agree with the analytical result of
dynamical partitions for anyq > 1 and forq < 1 only if the support of the measure is not fractal
or if the dynamical partitions are a subset of the uniform partitions. The spectra obtained from a
numerical approximation of the correlation integrals provide the correct result for any value ofq.
The algorithms based on the uniform partitions are fast and can be used for real-time analysis of
digitized images.

1. Introduction

The local properties of fractal measures are specified by the scaling exponents of spheres.
The global properties are described by the correlation integrals, defined as averages of the
measure of a sphere raised to the powerq, whose scaling exponentsτ(q) = (q − 1)Dq define
the dimension spectrumDq [1]. A simple relation between local and global properties was
established in [2]: the Hausdorff dimensionf (α) of the set of points with scaling exponentα is
the Legendre transform ofτ(q). A class of fractal measures is defined by the iteration of linear
contracting maps with statistical weights (IFS) [3]. This is a fairly general class since sequences
of such measures converge to the measures defined by iterating nonlinear contracting maps [4].
By using a technique based on the Mellin transform of correlation integrals [5] we explicitly
evaluate the spectrumτ(q) for the IFS measures with integerq > 1. By analytic continuation
the results extends toq < 1 whenever the correlation integral exists. At the same values
of τ(q) the free energy computed from dynamical partitions vanishes. For fractal measures,
whose generating IFS are not given, the free energy for uniform partitions must be computed.
For q > 1 the sequence produced by uniform partitions converges to the sameτ(q) obtained
with dynamical partitions [6,7]; forq < 1 no convergence results are known. We have made a
systematic numerical investigation of the dimension spectra provided by the free energy with
uniform partitions. Algorithms with optimal computational complexity have been developed
and applied to fractal measures generated by IFS. Good convergence is reached for any fractal
measure whenq > 1 and for measures with a Euclidean support (unit interval or square) when
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q < 1 and the result is the same as for the dynamical partitions. For fractal measures, whose
dynamical partitions are not a subset of the uniform partitions, the convergence forq < 1 is
poor andτ(q) is different from the result obtained with dynamical partitions.

Algorithms to evaluate the correlation integrals, using a discretization based on uniform
partitions were also developed; convergence was observed to the spectrumτ(q) of dynamical
partitions for any value ofq.

A generic digitized image has support on the unit square and the uniform partition
algorithm allows one to obtain a spectrum in real time (starting from 1024× 1024 pixels
of one byte). The correlation algorithm in this case is not recommended because it is very
slow.

2. Correlation integrals

We consider a systemM = (M1, . . . ,Ms) of linear maps with statistical weights(p1, . . . , ps).
Letting

Mi(x) = λiR(αi)x + bi 0< λi < 1 x ∈ I = [0, 1]d (2.1)

whereR denotes an orthogonal matrix, we assume that there is a connected setI0 ⊆ I such
that its imagesIj = Mj(I0) are disjoint subsets ofI0. The iterationsMn(A0) converge, for
anyA0 ⊆ I0, to a fractal attractorA. We define the dynamical partitionsI(n) of I0 by the
recurrenceI(n) = M(I(n−1)) whereI(0) = I0 and the dynamical partitions of the attractorA
byA(n) = I(n) ∩A. Any partition is the union ofsn disjoint sets

I(n) =
⋃

k1,...,kn

Ik1,...,kn Ik1,...,kn = Mk1 ◦ · · · ◦Mkn(I )

A(n) =
⋃

k1,...,kn

Ak1,...,kn Ak1,...,kn = Ik1,...,kn ∩A.
(2.2)

A measureµ onA is defined by assigning the value it takes on the sets of any of its partitions

µ(Ak1,...,kn ) = pk1 . . . pkn . (2.3)

The invariance of the measure with respect toM follows from the definition and reads

µ(M(A)) =
s∑
k=1

µ(Mk(A)) = µ(A) µ(Mk(A)) = pkµ(A). (2.4)

Lettingf (x) be any function almost-everywhere continuous we define its average with respect
to the measureµ by∫

f (x) dµ (x) = lim
n→∞

∑
k1,...,kn

f (xk1,...,kn )µ(Ak1,...,kn ) (2.5)

wherexk1,...,kn is any point inAk1,...,kn (notice that the diameterδ tends to 0 asn→∞). From
the invariance of the measure it follows that∫

f (x) dµ (x) =
s∑
k=1

pk

∫
f (Mk(x)) dµ (x). (2.6)

For any pointx ∈ A we consider the scaling exponentα(x) defined by the limit

α(x) = lim
r→0

logµ(A ∩ S(x, r))
logr

(2.7)



Dimension spectra of fractal measures 7991

whereS(x, r) is the sphere of centrex and radiusr. If the limit does not exist the sup and inf
limits define two distinct exponentsα(x), α(x). The average ofµq−1(A ∩ S(x, r)) defines
the correlation integrals† whose scaling exponents are denoted byτ(q)

C(q; r) =
∫
µq−1(A ∩ S(x, r))dµ (x) τC(q) = lim

r→0

logC(q; r)
logr

. (2.8)

For exactly self-similar fractals having equal scales and weights, the local scaling exponents
are the same and their value is the Hausdorff dimensionDH = − logs/ logλ. In this case
τC(q) = (q − 1)DH is linear. For a generic attractorτ(q) is concave and defines a spectrum
of dimensions

Dq = τ(q)

q − 1
. (2.9)

The result of the following holds.

Theorem. For q > 1 the integral converges and the scaling exponentτ(q) of the correlation
integral is the unique real solution of

s∑
j=1

p
q

j λ
−τ
j = 1. (2.10)

If the correlation integral converges forq < 1 thenτ(q) is still the solution of (2.10).

The proof is based on the use of the Mellin transform

8(ζ ; q) =
∫ 1

0
r−ζ

∂C

∂r
dr (2.11)

known as the energy integral. IfC scales asrτ then8 ∼ (τ − ζ )−1 has a pole atζ = τ .
We consider firstq > 1 integer so thatC(q, r) can be written as

C(r; q) =
∫ q−1∏

i=1

ϑ(r − ‖x− yi‖) dµ (yi ) dµ (x). (2.12)

The Mellin transform takes the following form:

8(ζ ; q) =
q−1∑
k=1

∫
‖x− yk‖−ζ

q−1∏
i 6=k
ϑ(‖x− yk‖ − ‖x− yi‖)

q−1∏
j=1

dµ (yj ) dµ (x) (2.13)

and the balance property of the measure allows one to write

8(ζ ; q) =
∑

j0,j1,...,jq−1

pj0pj1 . . . pjq−1

∫
‖Mj0(x)−Mjk (yk)‖−ζ

×
q−1∏
i 6=k
ϑ(‖Mj0(x)−Mjk (yk)‖ − ‖Mj0(x)−Mji (yi )‖)

q−1∏
j=1

dµ (yj ) dµ (x).

(2.14)

Only when the indicesj0, j1, . . . , jq−1 are equal can the factor‖ · · · ‖−ζ vanish and the
contribution be proportional to8(ζ, q) itself. The remaining terms define an entire function
of ζ :

8(ζ, q) =
q∑
j=1

p
q

j λ
−ζ
j 8(ζ ; q) +E(ζ ; q) (2.15)

† In every definition where the measure of a set is raised to a power, it is implicitly assumed that the result is zero
when the measure is zero, even if the power is negative:µq(B) ≡ 0 if µ(B) = 0 for anyq ∈ R.
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and the result is proved. To extend the result to any realq is immediate since8(ζ, q) is a
meromorphic function inq and its value on the sequence of positive integer values ofq allows
one to continue it on the whole complex plane excluding the poles. On the other hand, the
energy integral converges for any realq > 1 whenζ is real negative and the result is proved.
Forq < 1 the same conclusion holds provided that the correlation integral converges.

3. Free energies and uniform partitions

The dimension spectra are also introduced in the framework of the thermodynamic formalism.
The free energy for the dynamical partitions is defined by

FD(q, τ ) = lim
n→∞

1

n
log

∑
k1,...,kn

µq(Ak1,...,kn )

δτ (Ak1,...,kn )
(3.1)

whereδ(A) denotes the diameter of the setA. Inserting the expression for the measures and
the diameters of an IFS attractor with weightspi and scalesλi we obtain

FD(q, τ ) = lim
n→∞

1

n
log

∑
k1,...,kn

p
q

k1
. . . p

q

kn

λτk1
. . . λτkn

= log
s∑
j=1

p
q

j λ
−τ
j . (3.2)

The dynamical free energyFD vanishes at the scaling exponentsτ(q) of the correlation
integrals. Moreover,D0 = −τ(0) is the Hausdorff dimension. Indeed, the Hausdorff measure
is defined on coveringsBε with setsBi of diameterεi 6 ε according to

H(ε, β) = inf
Bε

∑
i

ε
β

i (3.3)

and the limit forε → 0 defines a functionH(β) which diverges forβ < DH and vanishes for
β > DH , whereDH is the Hausdorff dimension. The dynamical partitionA(n) is the covering
belonging toBε with ε = λn (whereλ is the largest of the scalesλi), for which the minimum
is achieved. As a consequence, the Hausdorff dimension satisfiesλ

DH
1 + · · · + λDHs = 1 which

impliesFD(0,−DH) = 0.
The uniform partitionsU (n) correspond to a tesselation of the unit cube into cubelets of

side 2−n. Replacing, in the definition of the free energy, the elementsAk1,...,kn of the dynamic
partitions with the cubeletsc(n)i for 16 i 6 2nd we obtain the free energyFU which reads

FU = τ + lim
n→∞

1

n
log2

2nd∑
i=1

µq(A ∩ c(n)i ). (3.4)

The dimension spectrum of uniform partitions is defined byτU (q)/(q − 1), where

τU (q) = − lim
n→∞

1

n
log2

2nd∑
i=1

µq(A ∩ c(n)i ). (3.5)

We consider the Legendre transform ofτ(q), which enhances the deviations ofτ(q) from a
linear behaviour. Sinceτ(q) is concave, d2τ/dq2 < 0, and its Legendre transform

f (α) = min
q
(qα − τ(q)) −→ α = dτ

dq
(3.6)

exists and is also concave. The following properties are an immediate consequence of the
definition:

maxf (α) = D0 ≡ DH f (α) = α for α = D1. (3.7)

The intervalq < 1 is mapped into ]α1, α−∞], the intervalq > 1 into [α+∞, α1[ whereα1 = D1

with f ′(α1) = 1 andf (α±∞) = D(±∞). Sinceq = df/dα the tangent is vertical atα±∞
and the maximum value off (α) is atα0 > α1, wheref (α0) = DH . It has been proved that

f (α) = DH(Aα) Aa = {x : α(x) = a}. (3.8)
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4. Numerical results

Algorithms of optimal computational complexity have been developed and implemented in
order to evaluate the dimension spectra provided by the uniform partitions and to test the
convergence, see the appendix. We have considered fractal measures on the unit interval
discretized into a vector of lengthN2 and fractal measures on the unit square discretized by an
N × N matrix where the integer entriesgi are the grey tones, ranging in the interval [0, Ng].
The discretized measures on the unit interval and on the unit square correspond to partitions
of order 2n andn, respectively, sinceN = 2n.

ChoosingN = 210 andNg = 231 − 1 (the bit corresponding to the sign being ignored
in the four-byte integer assigned togi) the total memory storage required is 4 Mbytes and the
highest-order partition isn = 20 andn = 10 ford = 1, 2, respectively.

The grey tonegi was defined as the closest integer toNgµ(A ∩ c(n)i ). The exact measure
µ(A ∩ c(n)i ) is replaced withg(n)i /G, whereG =∑ g

(n)
i is very close toNg.

In order to avoid errors introduced by the discretization process the number of grey tones
must be sufficiently large. For a measure with equal scalesλ, a rough estimate is given by
Ng > 2n logp1/ logλ wherep1 is the smallest weight. If the measure is balanced the condition
becomesNg > 2nDH and is satisfied with the above choice sincen = 20,DH 6 1 for measures
on the unit interval andn = 10,DH 6 2 for measures on the unit square. Indeed, the lowest-
orderm of a dynamical partition whose elements have a diameter less than or equal to 2−n

is m = −n/ log2 λ. Since the smallest measure of any element of the order-m dynamical
partition ispm1 fromNgp

m
1 > 1, the above estimate follows.

For the lower-order partitionU (n−1) we replace the measureµ(c(n−1)
i )withg(n−1)

i /Gwhere
g
(n−1)
i is computed by summing the grey tonesgi ′ of the (two or four) cellsc(n)i ′ whose union

is c(n−1)
i . By iterating the process, the grey tones for all the partitions from ordern to order

zero are obtained. The total storage required is less than 2N2 integers and the total number of
operations involved is less than 4N2 for fractal measures on the line and the plane respectively,
see the appendix.

For the chosen value ofn we consider the sequence

τ (n)m (q) = − 1

m
log2

∑(
g
(m)
i

G

)q
16 m 6 n. (4.1)

The exact spectrumτ(q) is given by the limit ofτ (n)n (q) asn→∞ or by the double limit for
n→∞ andm→∞.

Sincen is bounded to a finite value (10 or 20) we consider the sequence∑
i

(
g
(m)
i

G

)q
= 2−mτ(q)F (m) 16 m 6 n (4.2)

whereF(m) denotes the prefactor of the scaling law. Since forq > 1 the sum approximates
the correlation integral, we can determine the nature of the prefactors by looking at their Mellin
transform. For a fractal measure with equal scales the singularities of the energy integral are
the poles

λ−ζ
s∑
j=1

p
q

j = 1= e2π ik ζ = τ(q)− ik
ω

log 2
(4.3)

equally spaced on a line parallel to the imaginary axis, where

τ(q) = log(pq1 + · · · + pqs )
logλ

ω = 2π
log 2

logλ
. (4.4)
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Taking the inverse Mellin transform the scaling behaviour of the correlation integral is given
by 2−mτ(q) times a real periodic function ofm of periodω, so that we can write∑
i

(g
(m)
i )q ' GqCq(2

−m) = Gq2−mτ(q)2A0+f (m) f (m) =
∑
k>1

Ak cos(mkω + αk). (4.5)

It follows that a least-squares fit interpolation of the function

W(n)(m; q) = log2

∑
i

(g
(m)
i )q = −mτ(q) + q log2G +A0 + f (m) (4.6)

should provide a good approximation toτ(q). For a generic measure the functionf (m) is
quasi-periodic with decaying amplitudes, since the poles of the Mellin transform are no longer
on a straight line, but a good approximation from the least-squares fit interpolation may still
be expected.

A systematic investigation was made of IFS measures on the unit interval. Three distinct
classes were considered:

(i) Measures whose dynamical partitionsI(n) are a subset of the uniform partitionsU (n′) for
somen′ > n. Among them we distinguish the measures with support on [0, 1], and
measures with fractal support such as those generated by

(a)M1(x) = 1
2x M2(x) = 1

2x + 1
2

(b)M1(x) = 1
4x M2(x) = 1

4x + 1
2

(4.7)

for arbitrary weights.
(ii) Measures with support on [0, 1], whose dynamical partitions are not a subset of uniform

partitions (λ 6= 2−m for equal scales), such as those generated by

(c)M1(x) = 1
3x M2(x) = 1

3x + 1
3 M3(x) = 1

3x + 2
3. (4.8)

(iii) Measures with fractal support, with dynamical partitions which are not a subset of uniform
partitions, such as those on the ternary Cantor set generated by

(d)M1(x) = 1
3x M2(x) = 1

3x + 2
3. (4.9)

In figure 1 we show the spectrumf (α) for the measures generated by the maps defined
above. For the measures (a), (b) and (c) the functionW(n)(m; q) defined by (4.6) is linear in
m (up to small oscillations) for any value ofq; its slopeτ(q) and the corresponding Legendre
tranformf (α) are very close to the exact value.

For the measure (d) a nice linear behaviour is only observed forq > 1, but forq < 1
the deviations from linearity become significant and the slopeτ(q), determined by a poor
least-squares fit, differs from the theoretical values ofτ(q) given by (2.10).

Figure 2 showsW(n)(m; q) versusn−m for a set ofq-values. For the measure (a) the linear
behaviour holds for all values ofq, whereas for the measure on the Cantor set the deviation
from linearity forq < 1 is evident. For the Cantor set the extrapolated values forτ(q) differ
very significantly from the exact result and the same discrepancy holds for the generalized
dimensionsDq as shown by figure 3. It is not surprising that the Legendre transform for
α > D1, is also very distant from the exact result. Notice that the computation of the Legendre
transform is not a problem since the extrapolated valueτ(q) is also still concave forq < 1.

A similar analysis has been carried out for measures on the unit square [0, 1]. We have
considered a measure (a) generated by four maps which transform [0, 1] into four disjoint
squares of side12 whose union isI , a measure (b) with fractal support generated by the first
three of the previous maps, a measure (c) with support on [0, 1] generated by nine maps which
map [0, 1] on disjoint squares of side13 whose union is the unit square and a measure (d)
with support on the Serpinsky set. The functionW(n)(m; q) is linear inm in the whole range
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Figure 1. Legendre transformf (α) of the functionτ(q) computed from uniform partitions (dots)
and from dynamical partitions (continuous curves) for the measures generated by the maps (a) and
(b) with weightsp1 = 0.4, p2 = 0.6, by the map (c) with weightsp1 = 0.2, p2 = 0.5, p3 = 0.3
and by the map (d) with weightsp1 = 0.4, p2 = 0.6. The diagonal line isy = α and is a tangent
to the curve atα = α1, wheref (α1) = α1 = D1.

Figure 2. Plot of the functionW(n)(m; q) versusn−m for q = −20,−15,−10,−5, 0, 5, 10, 15
corresponding to the measure generated by the maps (a) with weightsp1 = 0.4, p2 = 0.6 (left
block) and to the measure on the ternary Cantor set with the same weights (right block). The values
of q in each block increase from left to right, the upper row corresponding to the negative values
of q and the lower row to the positive values.

[1, n] and the slope determined by a least-squares fit agrees with the result (2.10) of dynamical
partitions except for measure (d) whenq < 1. This is evident in figure 4 where the Legendre
transforms are compared; for the measure (d) the disagreement forα > D1 is evident. For the
measures (a), (b) and (c) on the line and the plane no appreciable degradation of the results is
observed by lowering the grey tones from 231 to 215. The method has been applied to a variety
of images not generated by IFS, and with support on the unit square. The linearity ofW(m, q) is
usually good for anyq and the Legendre transform is a concave function reaching the maximum
valueDH = 2 even with a number of grey tones 28, which is typical of a digitized image.
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Figure 3. Comparison of the exponentτ(q) (upper left), dimensionD(q) (upper right), Legendre
transformf (α) (lower left) and its enlargement (lower right) computed from uniform partitions
(dots) and dynamical partitions (continuous lines and curves) for the measure on a ternary Cantor
set with weightsp1 = 0.3, p2 = 0.7.

Since in the generic case the free energy computed from uniform partitions does not
provide the correct spectrumτ(q), one may wonder whether the correct result is numerically
accessible. The answer is positive if one uses a correct discretization of the correlation integrals.
In this case the average of a function is approximated by

∑
i f (xi )gi/G wherexi is any point

in the cellc(n)i of an order-n uniform partition. Convergence to the exact mean occurs for
n,Ng → ∞. The correlation integrals are computed for boxes of sider = 2−n(2m + 1)
centred on the cellc(n)i , wheren/2 6 m 6 n. Each box centred on the cellc(n)i , see figure 5,
is the union of cellsc(n)j where the indexj varies in some setJ (i,m) and we have

C(r, q) = lim
n→∞

∑
i

µ(A ∩ c(n)i )
( ∑
j∈J (i,m)

µ(A ∩ c(n)j )
)q−1

. (4.10)

The functions

W
(n)
C (m, q) = log2

∑
i

g
(n)
i

( ∑
j∈J (i,m)

g
(n)
j

)q−1

(4.11)

approximate log2(G
qC(r, q)) and consequently,

W
(n)
C (m, q) = (m− n)τ(q) + q log2G +A0 + f (n−m) (4.12)

where the last term comes from the corrections to the scaling law and we have neglected 2−m

compared with 1. The functionsW(n)
C (m, q) prove to be linear inm for all the measures listed

above including (d) whenq < 1 and the slope determined by least-squares fit is in good
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Figure 4. Legendre tranformf (α) of the functionτ(q) computed from uniform partitions (dots)
and from dynamical partitions (continuous curves) for the measures in the unit square generated
by the maps (a), (b), (c) and (d) (from left to right) described in the text.

Figure 5. The boxes used to compute the correlation integrals are shown for a partition of order
n = 3 of the unit square. The side of the boxesr = 5

8 corresponds tom = 2 in the general

expressionr = 2−n(2m + 1). The cellc(n)i is black and the box centred on it is grey.

agreement with (2.10). In figure 6 we show the corresponding Legendre transform. It should
be noted that when the support of the measure is the whole unit interval or square the algorithm
becomes very slow. For this reason it is not recommended for the analysis of a digitized image,
where fast computations are needed.

5. Conclusions

The algorithm introduced to compute the dimension spectra for uniform partitions is proposed
for analysis of the local scaling properties of a digitized image. It has been shown that
the spectra of fractal measures with support on the unit square are the same as the spectra
provided by the dynamical partitions, within the numerical uncertainty, even forq < 1. As
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f(
α)

α0.2 0.8
0

0.6

f(
α)

α0.5 1.5
0

1.1

f(
α)

α0 1
0

0.7

Figure 6. Legendre tranformf (α) of the functionτ(q) computed by the discretization of the
correlation integralW(n)

C (m, q) (dots) and from dynamical partitions (continuous line) for the
measures generated by the maps (b), (c) and (d) (from left to right) on the unit interval.

a consequence the wholef (α) spectrum of local exponents appears to be significant for a
generic image. Applications to the analysis of biomedical images are under consideration.
In particular, thef (α) spectrum seems to be capable of discriminating between normal and
osteoporotic bone radiographs.
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Appendix

The computational complexity of the algorithms proposed to evaluateW(n)(m; q), defined by
(4.6) can be evaluated as follows. At stepm (recall thatm = n is the order of the partition
corresponding to the pixel scale whereasm = 0 corresponds to the unitd-dimensional cube)
the number of sums needed to evaluateg

(m)
i from thegj is 2(n−m)d , wherei runs from 1 to

2md . As a consequence, the evaluation of theW(n)(m; q) for anym is the same 2nd and since
m varies between 1 andn the computational complexity isn2nd or lettingM = 2nd be the
number of pixels it can be written as

CM = M

d
log2M.

The optimal algorithm is defined by the iteration whereg(m)i is computed fromg(m+1)
j where

m runs fromn− 1 to 0. In this case there are 2d sums to compute eachg(m)i and consequently
2(m+1)d to compute all of them. In this case the computational complexity ofW(n)(m; q) is

CM = 22d (M − 1)

2d − 1
.

We remark that the result is linear inM and that ford = 1 we haveCM = 4(M − 1), whereas
for d = 2 we haveCM = 8

3 (M − 1). In section 4 we have usedM = N2.
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