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Abstract. The spectra of generalized dimensiabg and of local exponentg () for fractal
measures are evaluated by using the uniform partitions to compute the free energy. The numerical
results obtained from optimal algorithms are compared with the analytical results obtained from
the free energy evaluated with dynamical partitions, in the case of IFS measures. It is proved
that the spectr®, obtained from correlation integrals and dynamical partitions are the same even
for ¢ < 1. The spectra obtained from the uniform partitions agree with the analytical result of
dynamical partitions for any > 1 and forqg < 1 only if the support of the measure is not fractal

or if the dynamical partitions are a subset of the uniform partitions. The spectra obtained from a
numerical approximation of the correlation integrals provide the correct result for any vajue of
The algorithms based on the uniform partitions are fast and can be used for real-time analysis of
digitized images.

1. Introduction

The local properties of fractal measures are specified by the scaling exponents of spheres.
The global properties are described by the correlation integrals, defined as averages of the
measure of a sphere raised to the pogyerhose scaling exponentsg) = (¢ — 1) D, define

the dimension spectru®, [1]. A simple relation between local and global properties was
established in [2]: the Hausdorff dimensigix) of the set of points with scaling exponenis

the Legendre transform efg). A class of fractal measures is defined by the iteration of linear
contracting maps with statistical weights (IFS) [3]. Thisis afairly general class since sequences
of such measures converge to the measures defined by iterating nonlinear contracting maps [4].
By using a technique based on the Mellin transform of correlation integrals [5] we explicitly
evaluate the spectrumi(q) for the IFS measures with integgr> 1. By analytic continuation

the results extends @ < 1 whenever the correlation integral exists. At the same values

of 7(¢) the free energy computed from dynamical partitions vanishes. For fractal measures,
whose generating IFS are not given, the free energy for uniform partitions must be computed.
Forg > 1 the sequence produced by uniform partitions converges to thesgmebtained

with dynamical partitions [6, 7]; fog < 1 no convergence results are known. We have made a
systematic numerical investigation of the dimension spectra provided by the free energy with
uniform partitions. Algorithms with optimal computational complexity have been developed
and applied to fractal measures generated by IFS. Good convergence is reached for any fractal
measure wheg > 1 and for measures with a Euclidean support (unit interval or square) when
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g < 1 and the result is the same as for the dynamical partitions. For fractal measures, whose
dynamical partitions are not a subset of the uniform partitions, the convergengefdr is
poor ande (¢) is different from the result obtained with dynamical partitions.

Algorithms to evaluate the correlation integrals, using a discretization based on uniform
partitions were also developed; convergence was observed to the spe¢jnuof dynamical
partitions for any value of.

A generic digitized image has support on the unit square and the uniform partition
algorithm allows one to obtain a spectrum in real time (starting from 202024 pixels
of one byte). The correlation algorithm in this case is not recommended because it is very
slow.

2. Correlation integrals

We consider asystem = (M3, ..., M) of linear maps with statistical weightgs, . . ., ps).
Letting

M;(z) = A R(a))x + b; O<xrx <1 xel=][01] (2.1)

whereR denotes an orthogonal matrix, we assume that there is a connectigdsdtsuch
that its imaged; = M, (lp) are disjoint subsets dg. The iterations\"(Aq) converge, for
any Ap C Io, to a fractal attractord. We define the dynamical partition®® of I, by the

recurrencg™ = M(Z" V) whereZ©@ = I, and the dynamical partitions of the attractér
by A® = 7™ N A. Any partition is the union of” disjoint sets
70 = ) Iy, g,y = My 0 -+ - 0 My, (1)
ki,....kp
2.2)
AW = | Axk, Aty = Ty ok, VA
ki,....kp

A measureu on A is defined by assigning the value it takes on the sets of any of its partitions

WAk, k) = Py -+ - Pk, (2.3)
The invariance of the measure with respecttdollows from the definition and reads
w(M(A)) = ZM(Mk(A)) = wn(A) w(Mi(A)) = pru(A). (2.4)
k=1

Letting f (x) be any function almost-everywhere continuous we define its average with respect
to the measurg by

ff(w) du () = lim > f@h k(A k) (2.5)
k

,,,,,,,,,, x, (notice that the diametértends to 0 as — oc). From
the invariance of the measure it follows that

/ f@du@ =" p f F(My (@) d (). (2.6)
k=1

For any pointz € A we consider the scaling exponertr) defined by the limit

logu(AN Sz, r))
logr

a(x) = |imO (2.7)
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whereS(z, r) is the sphere of centee and radiug-. If the limit does not exist the sup and inf
limits define two distinct exponents(z), «(x). The average oft?~1(A N S(x, r)) defines
the correlation integralst whose scaling exponents are denote@ by

. logC(g;
Clg:r) = /Mq_l(/m S(z, r)) du (x) tc(q) = |lmo%- (2.8)
For exactly self-similar fractals having equal scales and weights, the local scaling exponents
are the same and their value is the Hausdorff dimenfign= —logs/logx. In this case

1c(q) = (¢ — 1) Dy is linear. For a generic attractofq) is concave and defines a spectrum
of dimensions

_1(q)
D, = -1 (2.9)

The result of the following holds.

Theorem. For ¢ > 1 the integral converges and the scaling expongg? of the correlation
integral is the unique real solution of

quk T = (2.10)

If the correlatlon integral converges fgr < 1thent(g) is still the solution of (2.10).

The proof is based on the use of the Mellin transform

1
(¢ 9) =f 2, (2.11)
0 ar

known as the energy integral. df scales as® then® ~ (r — ¢)"* has apole at = 7.
We consider firsy > 1 integer so tha€ (g, ) can be written as

q—1
Clriq) = /l_[ﬁ(f” — Nl — i lD) due (i) d (). (2.12)
i=1

The Mellin transform takes the foIIowing form:

q—1
(L5 q) = Zf le — i ¢ H Pz — yell =l — will) H du (y;) due () (2.13)
k=1 i#k
and the balance property of the measure allows one to wnte

(¢ q) = Z PioPjs -+ Piys f 1M, () — M, (i) |~
JosJj1s- /q
g—1 q-1

X ]_[ V(Mo (x) — M, (y)ll — 1Mo () — M, (yi) ) ]_[ du (y;) du ().
ik j=1
(2.14)
Only when the indicesj, ji. ..., j,—1 are equal can the factdr---||=¢ vanish and the

contribution be proportional té® (¢, ¢) itself. The remaining terms define an entire function
of ¢:

q
(L, q) =) pir; P9 +EE;q) (2.15)
j=1

T In every definition where the measure of a set is raised to a power, it is implicitly assumed that the result is zero
when the measure is zero, even if the power is negati¢¢B) = 0 if «(B) = 0 for anyg € R.
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and the result is proved. To extend the result to any geialimmediate sinceb (¢, g) is a
meromorphic function iy and its value on the sequence of positive integer valugsatibws

one to continue it on the whole complex plane excluding the poles. On the other hand, the
energy integral converges for any rgat- 1 when¢ is real negative and the result is proved.
Forg < 1 the same conclusion holds provided that the correlation integral converges.

3. Free energies and uniform partitions

The dimension spectra are also introduced in the framework of the thermodynamic formalism.
The free energy for the dynamical partitions is defined by
wI(Aky,. k)

..... 5 (At

1
Fplg,t) = lim —log (3.1)
n—oo n I
wheresd (A) denotes the diameter of the skt Inserting the expression for the measures and
the diameters of an IFS attractor with weightsand scalea; we obtain

1 pi---pL N .
Fp(g,7) = lim =log S =log ) piait. (3.2)
n—oo n AL AT . 7

k1o Tk1 k, j=1

The dynamical free energ§, vanishes at the scaling exponentg;) of the correlation
integrals. MoreoverDy = —1(0) is the Hausdorff dimension. Indeed, the Hausdorff measure
is defined on coverings, with setsB; of diameter; < ¢ according to

H(e, B) = ig{f Zef (3.3)

and the limit fore — 0 defines a functioi# (8) which diverges fo3 < Dy and vanishes for
B > Dy, whereDy is the Hausdorff dimension. The dynamical partitidfi is the covering
belonging toB, with e = A" (where is the largest of the scales), for which the minimum
is achieved. As a consequence, the Hausdorff dimension sati§fies- - - + 2 = 1 which
implies Fp(0, —Dg) = 0.

The uniform partitiong/™ correspond to a tesselation of the unit cube into cubelets of

.....

partitions with the cubelets,‘") for 1 < i < 2"? we obtain the free energ¥, which reads
2ud

1
Fu=1+lim =lo 2AN ™). 3.4
v=t+lim - 92;,“( ¢ ) (3.4)

The dimension spectrum of uniform partitions is definedbyy) /(g — 1), where
.1 2"
w(g) = — lim Zlog, Y " u(ANc"). (3.5)
n—oo n P
We consider the Legendre transformwf; ), which enhances the deviations«fy) from a
linear behaviour. Since(q) is concave, ér/dg? < 0, and its Legendre transform
B dr
=
exists and is also concave. The following properties are an immediate consequence of the
definition:

fle) = mqin(qoe - 1(q) — o (3.6)

max f(a) = Do = Dy fl@) =« for a = D;. (3.7)
Theintervaly < 1is mapped intod, ¢_o], the intervaly > 1into [w+oo, aa[ Wherew; = Dy
with f(a1) = 1 and f (¢+e) = D(F00). Sinceq = df/da the tangent is vertical at.
and the maximum value of («) is atag > a3, wheref («g) = Dy. It has been proved that

f(a) = Dy (Ay) A, ={x: a(x) = a}. (3.8)



Dimension spectra of fractal measures 7993
4. Numerical results

Algorithms of optimal computational complexity have been developed and implemented in
order to evaluate the dimension spectra provided by the uniform partitions and to test the
convergence, see the appendix. We have considered fractal measures on the unit interval
discretized into a vector of lengiti? and fractal measures on the unit square discretized by an
N x N matrix where the integer entrigs are the grey tones, ranging in the interval ;Q].
The discretized measures on the unit interval and on the unit square correspond to partitions
of order 2. andn, respectively, sinc&/ = 2".

ChoosingN = 29 andN, = 23 — 1 (the bit corresponding to the sign being ignored
in the four-byte integer assigned g the total memory storage required is 4 Mbytes and the
highest-order partition i8 = 20 andrn = 10 ford = 1, 2, respectively.

The grey tong; was defined as the closest integeMgu (A N ci(")). The exact measure
(AN ™) is replaced withg™ /G, whereG = 3" g™ is very close taV,.

1
In order to avoid errors introduced by the discretization process the number of grey tones

must be sufficiently large. For a measure with equal scalesrough estimate is given by

Ng > 2" logp1/10g% where p, is the smallest weight. If the measure is balanced the condition
becomesv, > 2"Pu and is satisfied with the above choice since 20, Dy < 1for measures

on the unit interval and = 10, Dy < 2 for measures on the unit square. Indeed, the lowest-
orderm of a dynamical partition whose elements have a diameter less than or equél to 2
ism = —n/log, .. Since the smallest measure of any element of the orddynamical

partition is p7' from N, p7' > 1, the above estimate follows.

Forthe lower-order partitior "2 we replace the measyrgc" ") with ¢~ / G where
gf’l’l) is computed by summing the grey tongsof the (two or four) ceIIs:l.(,”) whose union
is cf”_l). By iterating the process, the grey tones for all the partitions from orderorder
zero are obtained. The total storage required is less tN&rirtegers and the total number of
operations involved is less thawv4 for fractal measures on the line and the plane respectively,
see the appendix.

For the chosen value afwe consider the sequence

1 o\
T (q) =~ logy ) (%) tsmsn @

The exact spectrum(q) is given by the limit oft(" (¢) asn — oo or by the double limit for
n — oo andm — oo.
Sincen is bounded to a finite value (10 or 20) we consider the sequence

m)\ 1
3 (%) —2"@DFm)  1<m<n (4.2)
i

whereF (m) denotes the prefactor of the scaling law. Sincegfor 1 the sum approximates

the correlation integral, we can determine the nature of the prefactors by looking at their Mellin
transform. For a fractal measure with equal scales the singularities of the energy integral are

the poles

- - q _ ik _ s w
A ;pj =1=¢" ¢ =1(q) |k—|og 5 (4.3)
equally spaced on a line parallel to the imaginary axis, where
log(p? +---+ pd log 2
r(q) = 24 O W (4.4)

log A logr’
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Taking the inverse Mellin transform the scaling behaviour of the correlation integral is given
by 2-"7@ times a real periodic function af of periodw, so that we can write

Z(gi(m))q ~ Gch(z—m) — qu—int(q)2A0+f(m) f(m) — Z Ay Coquw + o). (45)
i k>1
It follows that a least-squares fit interpolation of the function
W™ (m: q) =log, Y (g{"™)" = —mz(q) +q10g, G + Ao + f (m) (4.6)

should provide a good approximation tdg). For a generic measure the functigimn) is
quasi-periodic with decaying amplitudes, since the poles of the Mellin transform are no longer
on a straight line, but a good approximation from the least-squares fit interpolation may still
be expected.

A systematic investigation was made of IFS measures on the unit interval. Three distinct
classes were considered:

(i) Measures whose dynamical partitiafi§’ are a subset of the uniform partitioh/§"” for
somen’ > n. Among them we distinguish the measures with support oi][Cand

measures with fractal support such as those generated by
@Mi(x) =5x  Mp(x) = 3x+3
(b) Mi(x) = 35 Ma(x) = 3x +3

(4.7)

for arbitrary weights.
(i) Measures with support on [@], whose dynamical partitions are not a subset of uniform
partitions ¢ £ 2= for equal scales), such as those generated by

() Ma(x) = ix Mp(x) = 3x + 3 Ms(x) = x + 3. (4.8)

(iii) Measures with fractal support, with dynamical partitions which are not a subset of uniform
partitions, such as those on the ternary Cantor set generated by

(d) My(x) = 3x Mp(x) = x + 2. (4.9)

In figure 1 we show the spectruif«) for the measures generated by the maps defined
above. For the measures (a), (b) and (c) the fundidh (m; ¢) defined by (4.6) is linear in
m (up to small oscillations) for any value gf its sloper (¢) and the corresponding Legendre
tranform f («) are very close to the exact value.

For the measure (d) a nice linear behaviour is only observed for1, but forg < 1
the deviations from linearity become significant and the slo@g, determined by a poor
least-squares fit, differs from the theoretical values@f given by (2.10).

Figure 2 showsV ™ (m; q) versus: —m for a set ofz-values. Forthe measure (a) the linear
behaviour holds for all values @f, whereas for the measure on the Cantor set the deviation
from linearity forqg < 1 is evident. For the Cantor set the extrapolated values(ipr differ
very significantly from the exact result and the same discrepancy holds for the generalized
dimensionsD, as shown by figure 3. It is not surprising that the Legendre transform for
a > Dy, is also very distant from the exact result. Notice that the computation of the Legendre
transform is not a problem since the extrapolated valyge is also still concave fog < 1.

A similar analysis has been carried out for measures on the unit squdre e have
considered a measure (a) generated by four maps which transfofrhifo four disjoint
squares of sidé'zl whose union id, a measure (b) with fractal support generated by the first
three of the previous maps, a measure (c) with support dtj ffenerated by nine maps which
map [Q 1] on disjoint squares of sidé whose union is the unit square and a measure (d)
with support on the Serpinsky set. The functiéi¥” (m; ¢) is linear inm in the whole range
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1.1 0.7

2 z
C S
o | o
0.5 1.5 0.2
1.1 1
0 5 o’
0.5 o 1.5 0

Figure 1. Legendre transfornf («) of the functiont (¢) computed from uniform partitions (dots)

and from dynamical partitions (continuous curves) for the measures generated by the maps (a) and
(b) with weightsp; = 0.4, p> = 0.6, by the map (c) with weightg; = 0.2, p» = 0.5, p3 = 0.3

and by the map (d) with weights; = 0.4, p» = 0.6. The diagonal line is = « and is a tangent

to the curve atr = a1, wheref (a1) = a1 = Dj.

| ooocos0c0eo|asessss | oanooonoe?5]

Figure 2. Plot of the functionW ™ (m; ¢) versus: — m for g = —20, —15, —10, -5, 0, 5, 10, 15
corresponding to the measure generated by the maps (a) with weights0.4, p, = 0.6 (left

block) and to the measure on the ternary Cantor set with the same weights (right block). The values
of ¢ in each block increase from left to right, the upper row corresponding to the negative values
of ¢ and the lower row to the positive values.

[1, n] and the slope determined by a least-squares fit agrees with the result (2.10) of dynamical
partitions except for measure (d) when< 1. This is evident in figure 4 where the Legendre
transforms are compared; for the measure (d) the disagreementfdp; is evident. For the
measures (a), (b) and (c) on the line and the plane no appreciable degradation of the results is
observed by lowering the grey tones froft @ 215, The method has been applied to a variety
ofimages notgenerated by IFS, and with support on the unit square. The lined¥ityol) is

usually good for any and the Legendre transform is a concave function reaching the maximum
value Dy = 2 even with a number of grey tone& @vhich is typical of a digitized image.
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50 2
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[
-50 0
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1 0.7
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o’ 0.4l :
0 0.4 a 0.8

Figure 3. Comparison of the exponentq) (upper left), dimensio (q) (upper right), Legendre
transform 1 («) (lower left) and its enlargement (lower right) computed from uniform partitions
(dots) and dynamical partitions (continuous lines and curves) for the measure on a ternary Cantor
set with weightg; = 0.3, p2 = 0.7.

Since in the generic case the free energy computed from uniform partitions does not
provide the correct spectrunig), one may wonder whether the correct result is numerically
accessible. The answer is positive if one uses a correct discretization of the correlation integrals.
In this case the average of a function is approximated by (x;)g;/ G wherez; is any point
in the cellc” of an ordem uniform partition. Convergence to the exact mean occurs for
n, N, — oo. The correlation integrals are computed for boxes of side 27"(2" + 1)
centred on the cell™”, wheren/2 < m < n. Each box centred on the cefl”, see figure 5,
is the union of cell$§.”) where the indey varies in some sek(i, m) and we have

g—1
C(r,q) = nIEanM(Amcf”))( > ,,L(Amcﬁ.’”)) . (4.10)
l

jeJ(i,m)
The functions
qg—1
W (m, q) = 1og, Zgﬁ’”( > gj-’”) (4.11)
i jed(i,m)
approximate log(G?C(r, ¢)) and consequently,
W (m, q) = (m —n)T(q) +q10g, G + Ag+ f(n — m) (4.12)

where the last term comes from the corrections to the scaling law and we have negfétted 2
compared with 1. The functiorwé”)(m, q) prove to be linear im: for all the measures listed
above including (d) wheg < 1 and the slope determined by least-squares fit is in good
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22 1.7
3 =z
= =

0 0

1.6 2.4 1.2 a 1.8
22 1.7 =8 o

o

3 3
= =

1 H 0

1.6 a 2.4 1.2 1.8

Figure 4. Legendre tranforny («) of the functiont (¢) computed from uniform partitions (dots)
and from dynamical partitions (continuous curves) for the measures in the unit square generated
by the maps (a), (b), (c) and (d) (from left to right) described in the text.

Figure 5. The boxes used to compute the correlation integrals are shown for a partition of order
n = 3 of the unit square. The side of the boxes= g corresponds ta: = 2 in the general

expression = 27" (2" + 1). The cellc™ is black and the box centred on it is grey.

agreement with (2.10). In figure 6 we show the corresponding Legendre transform. It should
be noted that when the support of the measure is the whole unit interval or square the algorithm
becomes very slow. For this reason itis not recommended for the analysis of a digitized image,
where fast computations are needed.

5. Conclusions

The algorithm introduced to compute the dimension spectra for uniform partitions is proposed
for analysis of the local scaling properties of a digitized image. It has been shown that
the spectra of fractal measures with support on the unit square are the same as the spectra
provided by the dynamical partitions, within the numerical uncertainty, even ferl. As
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0.6| 1.1 0.7|

f(a)
f(a)
fla)

1

Figure 6. Legendre tranformyf (o) of the functionz(q) computed by the discretization of the
correlation integraIWé")(m, g) (dots) and from dynamical partitions (continuous line) for the
measures generated by the maps (b), (c) and (d) (from left to right) on the unit interval.

a consequence the whojg«) spectrum of local exponents appears to be significant for a
generic image. Applications to the analysis of biomedical images are under consideration.
In particular, thef («) spectrum seems to be capable of discriminating between normal and
osteoporotic bone radiographs.
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Appendix

The computational complexity of the algorithms proposed to evalétam; ¢), defined by

(4.6) can be evaluated as follows. At step(recall thatm = n is the order of the partition
corresponding to the pixel scale whereas= 0 corresponds to the unitdimensional cube)
the number of sums needed to evalugt® from theg; is 2~"4, wherei runs from 1 to

2md  As a consequence, the evaluation of W& (m; ¢) for anym is the same’? and since
m varies between 1 and the computational complexity is2*¢ or letting M = 2" be the

number of pixels it can be written as

M
Cy =—log, M.

d
The optimal algorithm is defined by the iteration Whgf@ is computed frong;”'”) where

m runs fromn — 1 to 0. In this case there aré 8ums to compute eacgljm) and consequently
2m+1d to compute all of them. In this case the computational complexity 6t (m; ¢) is

oM —1)
Cu=2"%—1"

We remark that the result is linear M and that ford = 1 we haveC,, = 4(M — 1), whereas
ford = 2 we haveCy, = g (M —1). In section 4 we have used = N2.
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